Article

Inverse Bestimmung elastischer Materialparameter aus dem Ausbreitungsverhalten geführter Ultraschallwellen mittels eines Convolutional-Neuronal-Networks (vor Ort)

* Presenting author
Day / Time: 21.03.2022, 15:55-16:20
Room: 47-03
Typ: Vortrag (strukturierte Sitzung)
Online-access: Bitte loggen Sie sich ein, damit weitere Inhalte sichtbar werden (bspw. der Zugang zur Onlinesitzung).
Abstract:

Geführte Ultraschallwellen sind für die Materialcharakterisierung geeignet, da ihr Ausbreitungsverhalten abhängig von den Materialeigenschaften des untersuchten Werkstoffs ist.Um aus dem messtechnisch ermittelten Ausbreitungsverhalten geführter Ultraschallwellen Rückschlüsse auf die Materialparameter zu ziehen, werden in der aktuellen Forschung verschiedene inverse Methoden diskutiert. Dispersionsabbildungen im Frequenz-Wellenzahl-Bereich repräsentieren das Ausbreitungsverhalten geführter Ultraschallwellen. Maschinelles Lernen und insbesondere Convolutional-Neural-Networks (CNNs) sind eine Möglichkeit der automatisierten inversen Bestimmung der Materialparameter aus den Dispersionsabbildungen.In diesem Beitrag wird anhand synthetischer Daten gezeigt, wie das Ausbreitungsverhalten von geführten Ultraschallwellen unter Verwendung von CNNs und Dispersionsabbildungen genutzt werden kann, um die elastischen Konstanten einer isotropen plattenförmigen Struktur zu bestimmen. Anhand dieses Beispiels wird das generelle Vorgehen zur Anwendung maschineller neuronaler Lernverfahren aufgezeigt. Hierfür werden die verwendeten Daten analysiert, das Preprocessing erläutert, eine einfache CNN-Architektur gewählt und Saliency Maps erstellt. Im Rahmen der Auswertung wird insbesondere Wert auf die Erklärbarkeit und Zuverlässigkeit des verwendeten CNNs gelegt und so Grenzen und Möglichkeiten aufgezeigt.